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The article describes a complete numerical solution of arecently formulated bench-
mark problem devoted to the parametric study of RayleigraBd instability in rect-
angular two- and three-dimensional boxes. The solution is carried out by the spec-
tral Galerkin method with globally defined, three-dimensional, divergent-free basis
functions, which satisfy all boundary conditions. The general description of these
three-dimensional basis functions, which can be used for a rather wide spectrum
of problems, is presented. The results of the parametric calculations are presented
as neutral curves showing the dependence of the critical Rayleigh number on the
aspect ratio of the cavity. The neutral curves consist of several continuous branches,
which belong to different modes of the most dangerous perturbation. The patterns
of different perturbations are also reported. The results obtained lead to some new
conclusions about the patterns of the most dangerous perturbations and about the
similarities between two- and three-dimensional models. Some extensions of the
considered benchmark problem are discusset 1999 Academic Press

Key Words:global Galerkin method; finite volume method; RayleiglerBid
instability.

1. INTRODUCTION

The study of the stability and multiplicity of numerical solutions leads to an eigenvall
problem whose order is usually so large that a numerical solution becomes extremely
ficult. Although the corresponding numerical codes and new numerical approaches
being extensively developed recently, there is a considerable lack of theoretical and
merical results, which can be used for comparison and validation of numerical codes. -
paper is devoted to a relatively simple benchmark problem recently formulated for
validation of CFD methods containing stability analysis and path-continuation techniqu
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The benchmark problem was proposed at EUROMECH/EUROFTAC Colloquium 383
Continuation Methods in Fluid Dynamics [1].

The study of the stability of calculated fluid flows (assuming that the basic state
unknown and has to be calculated) usually is carried out by time-forward integration of
corresponding equations. This leads to CPU-time consuming computations and doe:
allow one to perform a detailed parametric study. Direct studies of stability and multiplici
which involve calculation of the Jacobian matrices, their determinants, and eigenvall
became possible only recently. A description of the main approaches, which involve
calculation of leading eigenvalues of the sparse Jacobian matrix by different version:
the Arnoldi method, can be found in [2, 3] and references therein. Another approach
proposed in [4] and was successfully used for parametric stability studies in [5-8]. T
latter approach uses the global spectral method to reduce the number of degrees of fres
of the numerical model and to calculate the spectrum of Jacobian matrices of much sm
size.

The best known CFD benchmark problem, which considers the instability of stes
flows, was formulated in [9]. However, most of the calculations reported in [9], as w
as those performed later, were done by a straightforward numerical integration in tir
To the best of our knowledge, the linear stability analysis of this problem was perforn
numerically only in [4, 10]. Apparently, this benchmark remains too difficult for numeric:
stability calculations, and another simpler benchmark problem can attract a wider attent
Such a problem was formulated recently in [1]. This benchmark problem is devoted to
Rayleigh—Rfnard instability in confined rectangular two- and three-dimensional containe
The problem is less difficult than others (e.qg., [9]) because (i) the basic state (non-unifor
heated quiescent fluid) is known and simple and (ii) the spectrum of the linear stabi
problem is purely real (i.e., only steady bifurcation is possible). This allows one to valid:
parts of numerical codes devoted to stability analysis without preliminary calculation of t
basic state. The existence of two- and three-dimensional subproblems also is an impo
advantage.

The present paper describes a complete solution of the benchmark problem by the gl
Galerkin method. The two-dimensional version of the approach is described in [4] and \
used for the study of stability of two-dimensional convective flows in [7, 8]. The thre
dimensional version of this numerical approach is described here for the first time.

The physics of the Rayleigh-é®ard instability is well understood [11-13]. A review of
the enormous amount of experimental, theoretical, and numerical studies devoted to
phenomena can be found in [13]. Most of these studies considered infinite fluid lay
Consideration of this phenomenon in closed two-dimensional cavities also does not c:
numerical difficulties [14—17]. However, as it is shown here, the detailed parametric stt
for three-dimensional rectangular containers leads to several new conclusions. Thus,
was shown for the Bhard—Marangoni instability [18], the possible multiplicity of super-
critical states and possible similarities between two- and three-dimensional results bec
clearer.

The article is organized as follows. Section 2 contains the formulation of the probile
and description of some known theoretical results. The numerical method is descri
in Section 3. Section 4 contains a series of test calculations, which are essential for
validation of further results. Results for two- and three-dimensional benchmark subproble
are described in Sections 5 and 6, respectively. The conclusions are drawn in Section
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2. FORMULATION OF THE PROBLEM

2.1. The Full Problem

Convection of a Boussinesq fluid in a rectangular two- or three-dimensional rectangt
cavity is considered. The flow is described by the dimensionless Boussinesq equation:

Pr- Bt + (v V)v} = —-Vp+ Av + Rafde, (1)
V.v=0 (2)
% +(v-V)0 = A0, (3

wherev = (v, vy, V7) is the fluid velocity,p = (9_ O_A)/(Q_B — G_A) the temperaturep the
pressurefa and 93 are the temperatures of the ambient and the bottom, respective
Ra=gu (s — OA)d /K the Rayleigh numbeRr = v/ the Prandtl numbeg the gravity
accelerationg the thermal expansion coefficielif,s — GA) the characteristic temperature
difference,v the kinematic viscositys the thermal diffusivity,d_the height of the cavity,
ande, is the unit vector in the z-direction (the overbar indicates dimensional variables).

It is assumed that the lower and the lateral boundaries are no-slip, the upper bounda
stress-free, the lower boundary is isothermal, the lateral boundaries are thermally insul
and a convective cooling condition characterized by a Biot nurBb& imposed on the
upper boundary. The dimensionless boundary conditions are

20 . 0 0
z=1 & _ _Big, v=x_W_g (5)
0z 0z 0z
00
=0A, —=0 =0 6
X El X ax ’ \ ()
00
=0A, —=0 v=0. 7
y y ay (7)

Here A, = Ly/d, A, = L,/d are the aspect ratios of the cavity in the x- and y-directions
respectively. The solution of the problem (1)—(7), corresponding to the quiescent state

1 Bi Bi
=0, Ralz— -——7 bo=1— ——2 8
Vo Po= (Z 21+Bi ) 0 148’ ®
The benchmark problem [1] requires us to calculate the critical védagf the Rayleigh
number, corresponding to bifurcation from the quiescent state to convective motion, for
following cases:

¢ Two-dimensional problemsA|, =
Probleml. ComputeRa, as a function ofA, [1, 10] for fixedBi=1;
Problem2. ComputeRa, as a function oBi e [1, 10] for fixed A, =10
Problem3. Compute the pattern of the critical mode for the cAge-10,Bi=1
& Three-dimensional problems:
Problem4. ComputeRa; as a function oA, = Ay € [1, 8] for fixed Bi=1,
Problem5. Compute the patterns of the critical modes for the dase 4, Bi=1
for several values of, € [1, 8].
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2.2. Linear Stability Problem and Some Theoretical Considerations

Following the linear stability theory [11,12], we introduce perturbatigng’, andd’ of
the initial state(vg, 6g) as

V=Vy+eV, pP=po+ep, 0 =6+ b, 9)

whereg is a perturbation amplitude which is assumed to be infinitely small. After substitutic
of (9) in Egs. (1)-(3) and neglecting all terms of order higher thathe problem for
perturbations becomes

%
v

Pr ot = —-Vp' + AV +Rad’e, (10)
V.V=0 (11)

a6’ Bi
-— - v, = Af'. 12
ot 1+Bi* (12)

Following [11, 12] we represent the perturbatiansp’, andd’ in the form
{V/s p/: 9/} = {U(X’ Y, Z), P(X, Y, Z), ®(X’ Y, Z)} eXp(M% (13)

where the new unknown functioms= (uy, uy, U;), P, and® depend on the spatial coor-
dinates only. Equations (10)—(12) become

APr-u= —VP + Au + Ra®e, (14)

V.-u=0 (15)

10 Bi U, = A® (16)
1+Bi ©

The boundary conditions far, P, and® follow from (4)—(8),

z=0 ® =0, u=20 a7
00 ) a 0

z=1 = —Bio, u2=ﬂ=ﬂ=o (18)
0z 0z 0z
00

X =0, A, 8—)(:0, u=0 (19)
00

=0,A, — =0, u=_0. 20
y Yy (20)

Equations (14)—(20) define the eigenproblem for the eigenvalaesl the eigenfunctions
u, P, and®. The initial statgvg, 6) is unstable if there exists atleast one eigenvalgeich
that Real{) > 0. Therefore, the solution of the stability problem requires us to determine t
critical value of the Rayleigh numb®&a,,, for which the largest real part of all the eigenval-
uesis zero. In other words, the marginal stability condition is ReéR; )] = 0, whereA is
the dominant eigenvalue (the eigenvalue with the largest real part). The eigenfunctions
responding to the dominant eigenvalue define the most critical mode of the stability probls
It is well known that the spectrum of the Rayleighesi&rd stability problem is real (see
[11, 12], for example). Thus, the considered problem is simplified: it is necessary to look
Ra, > 0, for which the dominant eigenvalueis the exact zero. Additionally, as it follows
from (14), the values of the paramet®&sg, A,, and Ay for which 2 =0 do not depend on
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the Prandtl number. Therefore in all calculations we condRter 1 without any loss of
generality.

3. NUMERICAL METHOD

We use the Galerkin method with globally defined basis functions, which satisfy all t
boundary conditions and the continuity equation. The described numerical approach
proposed for the solution of hydrodynamic stability problems in [4]. It was successful
used for the analysis of stability of axisymmetric swirling [5, 6] and two-dimension:
convective [7, 8] flows. Detailed data on several two-dimensional test problems, solvec
this numerical approach, can be found in [4-8]. In the present paper we focus only on
three-dimensional set of the basis functions in Cartesian coordinates. The set of the t
functions for the two-dimensional formulation is a particular case of the three-dimensio
case and was described in detail in [4].

The three-dimensional divergence-free velocity vector can be represented as (see

[18])

vX Ux UX 0
V = Uy = Uy = O + Uy . (21)
vz —f(%i;+%y)dz —[%=dz f""ydz

The two terms on the right hand side of (21) can be interpreted as the projections of velo
on thexy- (y=const) andxz (x =const) planes, respectively. Therefore, to represer
the three-dimensional velocity vector as a Galerkin series, it is necessary to define
independent sets of basis functions which will allow us to approximate the projections
the velocity on these planes. The velocity is approximated as

Nx y Nz
va TS TS T oW y, 2) + e Wk, y. )] (22)
i=0 j=0 k=0

wherec}} andcff’k) are unknown time-dependent coefficients afd andw,, are the basis

functions in the planes = const andy = const, respectively. These functions are define
as

0
I(jxk) (X Y, Z) Zﬁqzo fNimTi +m(ALx) ZI4:O %Tj +l (Aly> Zﬁ:o ﬁankJrnfl(Z)
— Ym0 fimTiam () X120 GitUjni-1(1) Yo sy Tetn (@
(23)
4 fim X 4 - 4
(y)( - Zm:O mTier (A—X) Z|:o 9ji Tj+ (A )ano NinUin-1(2)
Ijk X, ¥,z ~ R - ’
Yoo FimUim-1(2) S0 83t T () Xnco seiy Teen (@
(24)
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whereT, andU, are the Chebyshev polynomials of the firstand the second type, respectiv

Ta(X) = cosharccog2x — 1)],  Un(x) = Sin[(srilnj[La:i ig;ggﬁle)} bl . (25)

Because of the relation between the Chebyshev polynorgidx) T, 1(X) ==2(n+
1)Un(x) the basis functions (23), (24) are divergence-free and therefore the approxima
of the velocity (22) is analytically divergence-free for any number of Galerkin mode
Substitution of (23), (24) in the boundary conditions (e.g., (17)—(20)) defines a set
linear equations for the coeff|0|ent$m im» Gijt» Qj1 Rim, him. After these coefficients are
determined, the Galerkin series (22) satisfy all the linear homogeneous boundary condit
analytically (for details see [4]). Note also that the projection of the pressure gradient
the divergent-free basis (23), (24) is analytically zero [4], which means that the Galer
procedure eliminates the perturbation of pressure from (14). Therefore, we do not n
an approximation of the pressure. A similar spectral approach was used in [18] for
study of the Bhard—Marangoni instability in three-dimensional boxes. However, the ba
functions used there were restricted to the certain boundary conditions: most of the boun
conditions were satisfied analytically while several others (including the boundary condit
with Biot number) were satisfied numerically. The present definition of the basis functic
allows one to satisfy analytically (and without exceptions) an arbitrary set of linear bound
conditions.

The Galerkin series for the temperature is defined in a similar way,

6= (1 B ) +ZZZd.,k<t>q.,(x Y. 2), (26)

i=0 j=0 k=0

where

2 2 2
X y
gj(X,y,2 = mZ:O pimTi+m<Ax>;qlej+l <Ay);) FinTj4n(2 (27)

and the coefficientgy;, gy, andr; are defined to satisfy all the temperature boundar
conditions (17)—(20). Linear combinations of the Chebyshev polynomials, similar to (2
were used in [19] for solution of the one-dimensional Orr—Sommerfeld equation.

Application of the Galerkin method to the linear stability problem (14)—(20) leads to tt
algebraic eigenvalue problem (we consiBee= 1, as it was mentioned above)

N
ZLIJXJZ)\XM (28)

where theN-dimensional vectoiX consists of all the coefficientd;, cfﬁf and c,(Jyk),

N =3 x Ny x Ny x N; is the total number of the Galerkin modes (degrees of freedorr
and the matrix is composed from 9 matricé,y, Dyy, Dy, Dyy, Bx, By, Cx, Cy, andE as

Dwx Dy« RaB,
L= ny Dyy RaBy | . (29)

Cx c, E

1+B| 1+B
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The matricedD contain the Galerkin projections of the viscous dissipation terms, the m
trices B represent the projections of the buoyancy force, the matkespresent the
projections of the convective term of Eg. (16), and the mdrbepresents the dissipation
term of the energy equation:

Dy = [(Awije, wiao)]. (30)
B, = [{dij Wiy - &) (31)
Cy = [(Wifk - &, dpar)]. (32)
E = [(Adijk, dpgr)], (33)

Heren and¢ arex or y, and the pairs of indice§, p), (j,q), and(k,r) vary from O

to Ny, Ny, andN,, respectively, the angular brackets represent the inner product and
square brackets represent assembling all the terms in one matrix. Note that theLmatt
can be symmetrized if one multiplies Eq. (14) Bi/(1+ Bi) and Eg. (16) byRabefore
the Galerkin process starts. This will lead to the multiplication of the first two rows «
(29) by Bi/(1+ Bi), and the third row byRa It is easy to see that such a transforma-
tion will not alter the eigenvalues. The eigenvector will change so that components
X corresponding ta, andc}, will be multiplied by Bi/(1+ Bi), and the components
corresponding talj, will be multiplied by Ra Therefore, the patterns of the dominant
perturbation modes (which are defined within multiplication by a constant) will not k
altered.

The symmetric form of the matrik emphasizes the fact that all the eigenvalues ar
real numbers and permits us to use effective eigenvalue solvers for symmetric matri
However, such solvers will be hardly useful for the general case, when the stability
a basic state with non-zero velocity is considered. The code used in the present stu
based mainly on the QR decomposition algorithm for the general eigenproblem, whicl
used in cases when the stability of steady flows with non-zero initial velocity is considel
[4-8].

An approximation of the velocity field (22) may be represented also by the vector poten
W = (Wy, ¥y, ¥y, v=rot®. Using Egs. (21)—(24) it can be easily found tdgt=0, and
the two other components can be represented as

Nx NV Nz Nx Ny Nz
=Y 3 N dRouxy. . vy => 3" Y dRoyXxy.2 (34)
i=0 j=0 k=0 i=0 j=0 k=0

4 ~
e G y Pikn
Jk - Z flmTl+m<Ax>Z 2( |) H—l <Ay>z 2(k+ n*)Tk-&-n(Z) (35)
4

v _ 1EAim ( ) ( ) 2 ﬁI<n
Wik = ,;720%) o Zg“ 41 §Z(k+n)Tk*”(z)' (36)

The two scalar functiond, and¥, can be used to represent the three-dimensional veloci
field instead of three components of velocity (see Section 6). In the case of two-dimensic
flow in the xz-plane the two-dimensional stream function is represented hyith the
dependence on omitted.




MODES OF RAYLEIGH-EENARD INSTABILITY 307

4. VALIDATION OF THE CODE

4.1. An Infinite Fluid Layer

The first test case used for the validation of the code was the classical RayleigdreB”
problem for stability of the quiescent state of an infinite fluid layer heated from below. Thr
cases of the boundary conditions were considered: (1) stress-free isothermal horizc
boundaries, (2) no-slip isothermal horizontal boundaries, and (3) stress-free thermally il
lated upper and no-slip isothermal lower boundary. Cases (1) and (2) are classical [11
and the critical Rayleigh numbers &®ef}) = 277%/4~ 657511 andRd} ~ 1707.762, re-
spectively. In the third case, considered in [20], it is assumed that the initial distributi
of the temperature i8 = 1 — z (isothermal boundaries), but the boundary conditions fo
the perturbation of the temperature are described by (17), (18)Bvith0. This yields
R ~ 669. The last case was used to validate the code for different boundary conditi
at the horizontal boundaries.

Itis known that the onset of convection in all three problems is caused by two-dimensio
perturbations[11, 12]. This allows usto consider rectangular cavities with periodic bound
conditions on the vertical boundaries. The aspect ratio of the cavities was taken equi
half of the critical wavelength. The results for different numbers of the basis functions
summarized in Table I. It is seen that for all three cases the usexd basis functions
provides 3—4 correct digits &a,, and that convergence up to 9-10 digits is reached wit
the use of 10« 10 basis functions. Such a rapid convergence can be explained by the fc
of the most critical modes, which are sine and cosine in both directions. The Chebys
polynomials (25) used in the definitions of the basis functions also are forms of sine «
cosine and hence provide a very rapid approximation of the latter.

4.2. Two-Dimensional Cavities

Convergence of the critical Rayleigh number for two-dimensional cavities is shown
Table Il. ForBi =1 (Problem 1) cavities witA =1, 5, and 10 were considered. To ensure
convergence for othdBi (Problem 2) the most difficult case wih= 10 andBi =10 was
also taken into consideration. The number of basis functhins N, was always chosen
such thatN, = (number of rolls)x N, . The number of convective rolls in the most critical
perturbation mode increases with the growth of the aspect ratio (see Section 5). There
better resolution in the horizontal direction is needed to resolve the perturbation m
correctly. The results show (see Table Il) that four correct digitR&®f can be obtained

TABLE |
Critical Rayleigh Number for Onset of Convection in an Infinite Horizontal Fluid Layer

Infinite layer with Infinite layer with Infinite layer with
sress-free isothermal no-slip isothermal boundary conditions (17)
Ny x N, boundariesRgY boundariesRd? (18) forBi=0, Re®
2x2 664.86942 1751.19773 683.75248
4x4 657.51854 1708.55024 669.06955
6x6 657.51139 1707.76205 669.03345
8x8 657.51140 1707.76181 669.03345

10x 10 657.51140 1707.76181 669.03345
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TABLE Il
Convergence Study for Finite 2D Cavities with Boundary Conditions (17)—(19)

A=1,Bi=1(1roll) A=5,Bi=1 (4rolls) A=10,Bi=1 (7 rolls) A=10,Bi=10 (8 rolls)

Ny x N, Ray Ny x N, Ra, Ny x N, Ray Ny x N, Ra,

4x4 3147.8841 &2 1699.4276 14 2 1602.4762 1& 2 1128.7519
6x6 3147.2828 1& 4 1648.9375 2& 4 1566.0572 3% 4 1105.5130
8x8 3147.2654 246 1648.8235 4% 6 1565.9507 4% 6 1105.3999
10x 10 3147.2641 3% 8 1648.8233 56 8 1565.9506 64 8 1105.3999
12x 12 3147.2640 4610 1648.8233 7& 10 1565.9506 8& 10 1105.3999
14x 14 3147.2640 4& 12 1648.8233 84 12 1565.9506 9& 12 1105.3999

with Ny = 6. Eight digits ofRa,; remain unchanged with the usel§ > 12. This ensures
the convergence of the numerical method.

Further validation of the numerical method requires comparison with independent |
merical data. To validate the coefficients in (23), (24), and (27), defining the bound:
conditions, it is necessary to compare with independent results obtained for the consid
boundary conditions (17)—(20). To the best of our knowledge, such data was not publis
yet. Therefore, the necessary comparison is carried out in two separate ways, as foll
First, we compare with the results of [14], obtained for cavities with four no-slip wall
Second, using the unsteady finite volume solver, we produce some independent data fc
considered boundary conditions and use it for comparison. The comparison with result
[14]is shown in Table Ill. The results coincide up to the fourth digit, which provide an adc
tional justification of the described spectral approach. According to our convergence stu
(Table I1), we can expect more than 4 correct digits in our results reported in Table III.

To validate the converged valuesR¥é,, obtained for the considered boundary conditions
(17)—(20), a direct straightforward solution of the problem (1)—(7) was carried out using
finite volume method. The method is second order in space and time and was already
for similar purposes in [5-8]. To define the departure from the pure conduction regime
we define the Nusselt number as

1+ Bi Aae
i
_it —dx

BiA J 9z
0

Nu =

(37)

Obviously,Nu= 1 corresponds to pure conduction add> 1 indicates the presence of
convective motion. The relatio$u(Ra) were calculated for the casés=1, Bi=1 and

TABLE 11l
Comparison with Results of [14]: Finite 2D Cavities
with 4 No-Slip Walls

A Ny x N, Present results Results of [4]
1 10x 10 2585.02 2585.03
2 20x 10 2013.21 2013.24
3 30x 10 1870.58 1870.72
4 40x 10 1810.27 1810.48
5 50x 10 1778.56 1779.00
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TABLE IV
Elapsed CPU Time (s) for Different Eigensolvers

Parameters Ny x N, 1 2 3 4
A=1,Bi=1 10x 10 3.2 2.0 1.6 0.64
A=5Bi=1 40x 10 330 230 205 35
A=10,Bi=10 80x 10 3320 2020 1890 210

Note.Calculations on workstation DEC 3000. 1, QR eigensolver with non-symmetric matrix; 2,
QR eigensolver with symmetrized matrix; 3, QL/QR eigensolver for symmetric matrices; 4, inverse
iteration algorithm.

A=10,Bi=10, using 50< 50 and 100x 30 uniform grids, respectively. In the first case
the onset of convection was found to take place in the interval 31R@8< 3150, and in
the second case 11680Ra< 1107. Both results are in complete agreement with the resul
of linear stability analysis (Table II).

It should be noticed that the straightforward time-dependent calculations near the crit
points are more difficult than far from them. Consider, for example, theAas#0,Bi = 10.
The calculations were done using a 2080 uniform grid and a time steft = 0.01. Steady
state was assumed to be reached when the relative difference between two succe
states in each node of the grid was less than10~°. Calculation forRa= 1400, using
steady state &a= 1500 as initial gueséARa= 100), required 920 time steps. A similar
calculation forRa= 1120, using steady state Ba=1130 as initial guessARa=10),
required 1300 time steps. The necessary integration time increases when the Ray
number approaches its critical value. This simple example emphasizes the superioril
a direct stability analysis as compared with a straightforward unsteady simulation wi
hydrodynamic stability problems are considered.

Some characteristic elapsed CPU times needed for the solution of the eigenvalue prol
(28) are shown in Table IV. The first case (QR algorithm for the non-symmetric nigtrix
is characteristic of the general case with non-zero initial velocity field. The DGEEV driv
routine of the LAPACK library was used for this purpose. The necessary CPU time gro
approximately adl®, whereN is the total number of degrees of freedol= 2 x Ny x Ny
for 2D convective flows andN =3 x Ny x Ny x N, for 3D convective flows). Use of
the QR algorithm with the symmetrized matrix (case 2 in Table 1V) allows one to redu
the necessary CPU by approximately 30%. The reason for this is the triangular form of
resulting Hessenberg matrix, such that no additional computations are needed to obtai
eigenvalues. A switch from general to symmetric QL/QR eigensolver (DSYEYV driver ro
tine of the LAPACK library, case 3 in Table 1V) provides an additional speedup of 5—10¢
Finally, we tried to use the inverse iteration algorithm to calculate the dominant eigenva
only. For the firstinitial guess it was assumed that the dominant eigenvalue is a small pos
number, saypA = 0.1. In the case when the computation converges to a correct eigenva
the inverse iteration algorithm (case 4) is faster than previous algorithms (see Table
However, it converges only when the dominant eigenvalue is far enough from the rest of
spectrum. Unfortunately this is not the case for the considered problem (see below), as
as for other hydrodynamic stability problems. In cases when several eigenvalues are ¢
(in the considered case—close to zero), the inverse iteration algorithm does not conve
or converges to a wrong result (non-dominant eigenvalue). The reported stability diagr:
were obtained with the use of the QR algorithm with the symmetrized matrix
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TABLE V
Test Calculations for Finite 3D Cavities,Bi =1

A=A=1 A=A =4 A=A,=8
Ny x Ny x N, Ra, Ny x Ny x N, Ra, Ny x Ny x N, Ra,
4x4x4 4350.3 6x6x4 1687.1 8 8x14 1590.8
6x6x6 4347.2 8 8x6 1683.9 10 10x 6 1579.0
8x8x8 4347.1 10x 10x 8 1683.8 12 12x 8 1577.2
10x 10x 10 4347.1 1% 12x 10 1683.8 14« 14x 10 1577.2

4.3. Three-Dimensional Cavities

The three-dimensional part of the code was validated using the results of [21] obtail
for a rectangular cavity with no-slip boundaries. Our results¥er Ay = Ay =2 and 6 are
Ra; =2085 and 1755, respectively. The corresponding results of [2Rare= 2107 and
1765. Several examples of convergence study for cavities Ajte Ay = A (Problem 4)
are shown in Table V. Compared to the two-dimensional case the total number of deg
of freedom increases by a factor abX Ny. Therefore it was not possible to perform the
convergence study with as much detail as it was done for 2D cavities. However, the res
reported in Table V together with the conclusions made in the preceding subsection alloy
to be quite confidentin 4-5 correct digitsRd,, when using 10« 10 x 8 basic functions for
A <4, and 12x 12 x 8 basic functions foA < 8. It is seen (Table V) that results obtained
for small number of the basis functions (with poor spatial resolution) overestimate value:
Ra,. The above small discrepancy between our results and results of [21] can be expla
by fewer number of Galerkin modes used for the calculations [21]. Besides this, dur
the EUROMECH Colloquium 383, we compared our critical values with results of oth
authors (not published yet). Comparisons made mainlyjferA, = Ay =1 and 3 showed
good agreement between different numerical approaches used.

The characteristic CPU times for the corresponding eigenproblems are (QR decomf
tion algorithm for symmetrized matrlx) 2600 s for 8x 8 x 8 basis functions (1536 degrees
of freedom) on DEC 3000 workstation; 3500 s ford22 x 8 functions (3456 degrees of
freedom) on CRAY J90 with 8 processors.

5. RESULTS FOR THE TWO-DIMENSIONAL CASE

The marginal stability curvRa,, (A) for Bi= 1 is plotted in Fig. 1. It consists of several
continuous parts, which correspond to the different most critical modes. In cases of insta
ties due to Hopf bifurcation, different most critical perturbation modes can be distinguist
by abrupt changes of the critical frequencies of oscillations [5-8]. In the present ce
however, the only way to distinguish between the different perturbation modes is to
the corresponding patterns of the most critical perturbations. Clearly, at the points wh
one critical mode is replaced by another one the critical Rayleigh numbers of both mo
are close. Therefore, it is not enough to compare only the calculated valReg diecause
close values can belong to different perturbation modes. Patterns of the dominant pertt
tions also must be compared. For that reason we have to extend the Problem 3 anithéo pl
different pattern®f the most critical modes. These different modes differ by the number
convective rolls and are included in Fig. 1 as insets. Furthermore, to make a complete ¢
parison between different numerical approaches it is necessary to compare the values «
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a 3500

FIG. 1. Dependence of the critical Rayleigh number on the aspect ratio. Two-dimensionaBcase.
(@) 1< A<5, (b)5< A<10.

aspect ratio where one dominant mode is replaced by another one. These values are s
in Fig. 1, as well as in all stability diagrams corresponding to other 2D and 3D cases
should be mentioned that the increase of the number of two-dimensional RayleigreB”
convective rolls with the increase of the aspect ratio is well known [13-15].

The dependencBa, (Bi) for A=10 is shown in Fig. 2. In this case only one change
of the most critical perturbation mode (from seven to eight convective rolls) was found
Bi = 2.34. Patterns of the corresponding most critical modes are shown as insets in Fig

It should be noted also that at large supercriticalities, where several perturbation mc
are unstable, one can expect the existence of multiple steady (and probably also oscilla
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FIG. 2. Dependence of the critical Rayleigh number on the Biot number. Two-dimensionalicask.

states of the convective flow. The resulting asymptotic state will depend not only on-
governing parameters but also on the initial state of the flow.

6. RESULTS FOR THE THREE-DIMENSIONAL CASE

6.1. Problem 4: Square Horizontal Cross Sectidrx A= Ay = Ay <8

The neutral curve for Problem @ < A= A, = Ay <8) is shown in Fig. 3. Similarly
to the two-dimensional case, there are several modes of the most dangerous perturb
which replace each other whéis varied. However, the spectrum of possible perturbation
is more complicated in the three-dimensional case. The larger variety of perturbation
obviously caused by the three-dimensional geometry. An additional complexity is cau
by the variety of the symmetries of the problem (see below). Values of critical Raylei
numbers corresponding to different perturbation modes are close which makes it diffi
to indicate the most dangerous one. The last statement is illustrated in Table VI wr
lists the largest eigenvalues in the intervall] 0], calculated for the casé= 1.7, at the
critical Rayleigh numbeRa,; = 23552. Note that aRa= 2400 the dominant eigenvalue is
already larger than 20,,,.x=29.91. In the considered case (Table VI) there are 4 multipl
and 7 simple eigenvalues which are relatively close to zero. It is obvious that at Rager
more modes become unstable which can lead to an appearance of multiple steady s
Recently, seven different supercritical steady states in a cubic cavity heated from be
were calculated in [22].

Following [18] we denote symmetry classeg, EO, OE, andOO for functions which
areeven orodd with respect to the midplanes= A, /2 andy = Ay/2, respectively. Fur-
thermore, we denote symmetry clas&3andRAfor functions which aresymmetric and
antisymmetric, respectively, with respect to 280tation around the vertical axis that passes
through the center of the horizontal cross section (ireA,/2, y = Ay/2). Note that the
EE class is a subset of tHeSclass (theOO class is a subset of tHeA class); however,
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TABLE VI
Larget Eigenvalues 0< A < 1 Found
for Ra=23552 andA=1.7

z
°

A Multiplicity

0
—0.3276
—0.3402
—-0.3717
—0.5585
—0.5681
—0.5694
—0.6196
—0.6536
—0.7230
—0.9608
—0.9991
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these classes do not coincide (see Figs. 4 and 5, for example). Note also that in cavities
square horizontal cross section the clagg@andOE are identical, and the classeSand

RAare defined to within a 90rotation around the same axis. This leads to a multiplicity
of the corresponding eigenvalues. For example, the leading eigenvalue in Table VI co
sponds to the perturbation wibdAsymmetry and has a multiplicity of 2. It should be noted
also that symmetries of all scalar functions considered (three components of velocity

FIG. 4. Perturbation aA, = A, =1, Bi=1, Ra, =4347. (a) Perturbation of temperature, (b) streaklines of
perturbation of velocity, (c) isotherms, and (d) vertical velocity contours in the mid-height cross section.
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FIG.5. Perturbation a\, = A, =15, Bi=1, Ra, = 2506. Same as Fig. 4.

temperature) do not necessarily coincide. Therefore we use only the temperature an
vertical velocity, whose symmetries necessarily coincide (larger temperature causes i
of the fluid), to characterize the symmetry properties of the perturbation patterns.

It follows from the multiplicity of the perturbation modes that comparison of values ¢
the critical Rayleigh number only is not sufficient to ensure that different codes yield simi
results. It is necessary also to compare the patterns of the most dangerous perturbati
several characteristic points and to compare the valugswhere different perturbation
modes replace each other (as we suggested for the two-dimensional case). These \
of the aspect ratio are shown in Fig. 3. The characteristic patterns of the most dange
perturbations of the temperature and velocity are illustrated in Figs. 4-11. To visual
velocity we use streaklines calculated using the calculated perturbation of velocity. N
that in the three-dimensional case the streaklines are not necessarily closed curves.
follows from the following figures, a liquid particle can travel from one convective roll t
another (see also [22]). In the following text the word “perturbation” will be used inste:
of the term “the most dangerous perturbation.”

At A= A= Ay =1 (Fig. 4) the perturbation is similar to the one obtained for the twc
dimensional case (Fig. 1a) and appears as a roll where hot liquid rises along one ver
wall and cold liquid descends along the opposite wall. The perturbations of temperature
vertical velocity belong to th®Asymmetry class (Figs. 4c and 4d). At larger valueg\of
this perturbation pattern deforms such that the flow trajectories and temperature isosurf
tend to turn away from the walls towards the diagonal planes (Fig. 5) and therefore bec
different from their two-dimensional analogues. However, Rfesymmetry is preserved
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1,Ra, =1728. Same as Fig. 4.

=A,=3,Bi=

FIG. 6. Perturbation afA,

)

X

[/
A

1,Ra, = 1684. Same as Fig. 4.

FIG. 7. Perturbation a\, = A, =4, Bi
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FIG. 8. Perturbation a, = A, =5, Bi=1, Ra, = 1633. Same as Fig. 4.

(Figs. 5¢c and 5d). AA = 2.09 (Fig. 3a) this perturbation is replaced by another one (Fig. 6
where the hot liquid rises at the center of the cavity and the cold liquid descends along
vertical walls. A cross section by a vertical midplane yields the pattern which is simil
to a two-dimensional one shown in Fig.la for the interval including 3. However, the
toroidal shape of the convective roll cannot be predicted on the basis of a two-dimensi
calculation. The perturbations of temperature and vertical velocity in this case belong
the EE symmetry class (Figs. 6¢ and 6d).
The next change of perturbation takes placé\at 3.90 (Fig. 3b). The corresponding

perturbation belongs to tiRAsymmetry class and consists of three convective rolls (Fig. 7

FIG. 9. Perturbation a\, = A, =6, Bi=1, Ra, =1598. Same as Fig. 4.
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FIG. 10. Perturbation al, = A, =6.5, Bi=1, Ra, = 1597. Same as Fig. 4.

This perturbation pattern in a vertical midplane cross section looks similar to the correspc
ing two-dimensional result (Fig. 1a). Another perturbation, belonging t@theymmetry
class (Fig. 8), appears to be the most dangerofsa4.98 (Fig. 3b). It consists of four rolls,
located in the corners, with the hot fluid rising near two opposite corners and descenc
near two other corners (Fig. 8b). This perturbation is replaced-a6.38 by another one
which belongs to thEE symmetry class (Fig. 9). It consists of two toroidal rolls, one inside
another, with the hot fluid descending near the walls and the center (Fig. 9b).

It is more difficult to describe the flow arising as a result of bifurcations correspondil
to the two last branches of the neutral curve (Fig. 3c). The perturbation which is the m
dangerous in the interval#l < A < 7.37 is illustrated in Fig. 10. Here one can see strong

FIG. 11. Perturbation ah, = A, =7, Bi=1, Ra, =1588. Same as Fig. 4.
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upflow and downflow in two opposite corners, while in two other corners the convecti
motion is weaker. The symmetry of the perturbation clearly belongs to theRRass

The last perturbation corresponding to the neutral curve shown in Fig. 3 is illustratec
Fig. 11. This perturbation also belongs to Bwclass, but now the upflow and the downflow
occur near the opposite walls.

6.2. Problem 5: A=4,1<A,<8

The neutral curve for this case is shown in Fig. 12. Similarly to the previous case |
points where one perturbation is replaced by another one are shown on the graph. Pat
of the most dangerous perturbations are shown in the following figures.
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3
=200 A= 184
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] A=2069 A= 354
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] \\\\\\\‘-~.______________
1600 . — —
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FIG. 12. Dependence of the critical Rayleigh number on the aspect ratie-4, 1< A, <8. Three-
dimensional casd8i=1. (a) 1< A, <4, (b) 4< A, <8.
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FIG. 13. Perturbation a\, =4, A, =1, Bi=1, Ra, = 2645. Same as Fig. 4.

At Ay =1 (Fig. 13) the perturbation belongs to & symmetry class and consists of
three convective rolls parallel to the shorter lateral boundary. In the cross sgetior it
looks similar to the two-dimensional perturbation’@P = 4 (Fig. 5a,A%° denotes the two-
dimensional aspect ratio). A&, = 1.28 (Fig. 12a) it is replaced by tHeO-symmetric per-
turbation which consists of a single roll situated along the longer lateral boundary (Fig. 1
A similarity with the two-dimensional case also can be found, but in this case one ha:
compare the cross sectign= 2 with the 2D perturbation a?° = 1. The next change of the
perturbation takes place &t = 1.84. The next perturbation ©E-symmetric and consists
of three rolls situated along the longer lateral boundary (Fig. 15). Again, the cross sec
x = 2 shows similarity with the two-roll 2D perturbation characteristicA8P > 3.59 (not
A?P =2, see Fig. 1a). Note that in spite of the clear similarity between the 3D and :
perturbations it is impossible to foresee in which cross section of the three-dimensic
container the similarity will exist.

The perturbations which become the most dangerousat 2.59 and A, =3.54
(Fig. 12a) have patterns similar to those reported in Figs. 6 and AferA, = Ay =3

FIG. 14. Perturbation alA, =4, A, =1.5,Bi=1, Ra, = 2043. Same as Fig. 4.
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FIG. 15. Perturbation ah, =4, A,=2,Bi=1, Ra, =1918. Same as Fig. 4.

and A= A= Ay =4, respectively. The two perturbations characteristic for the two la:
branches of the neutral curve are illustrated in Figs. 16 and 17. The perturbation whic
most dangerous for.31< A, <6.75 (Fig. 16) isEE-symmetric and has two main convec-
tive rolls located near the shorter lateral boundaries. Convective motion outside the n
rolls is weak and has no definite roll structure. This perturbation has no two-dimensio
analog. The next perturbation, most dangerousApe- 6.75 (Fig. 17), iSOE-symmetric
and consists of 5 transverse rolls directed along the shorter lateral boundaries. This
turbation is similar to the two-dimensional one (see the perturbation shown in Fig. 1b
AP =7).

FIG. 16. Perturbation ah, =4, A, =6.5,Bi=1,Ra, =1617. Same as Fig. 4.
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FIG. 17. Perturbation af, =4, Ay =7.5,Bi=1, Ra, =1603. Same as Fig. 4.

CONCLUSIONS

The problem considered here deals with the spectrum of linear terms of the Navier—Stc
and energy equations in the Boussinesq approximation. This problem does not require
good spatial resolution and therefore can be treated with relative ease numerically. O
ously, more realistic problems devoted to thamerical study of the stability of numerically
calculated flowsvill involve also the calculation of the basic flow. Then it will be necessar
to reach a sufficient accuracy for both basic state and the most dangerous perturbatio
the case of boundary layers [5, 6] or multiplicity of the basic states [8] the problem ¢
become extremely difficult. In view of this the considered benchmark can be attract
for those who start the numerical stability analysis and need validation of their numeri
schemes and eigensolvers. On the other hand it can be used only as as a preliminary
dation and should be completed by solution of a problem with priori unknown basic
state.

The physics of the Rayleigh-éBard instability is very well understood [11-13]. How-
ever, the results obtained here for a particular rectangular geometry lead to an additi
conclusion. It was shown that several different perturbations of the basic quiescent <
become critical at close values of the Rayleigh number. This means that in a supercrif
state any of these perturbations can grow and the final asymptotic state will depend or
initial conditions. Therefore multiple supercritical steady states can be expected here.
fact should be taken into account when experimentally observed or numerically obtail
supercritical flows are compared. It was mentioned already that seven distinct branche
supercritical states for the Rayleighetidrd convection in a cube were calculated recentl
in [22]. Multiple patterns of Bhard—Marangoni instability in three-dimensional boxes wer
also obtained in [18] using a spectral approach similar to one described here.

There exists a certain similarity between the patterns of two- and three-dimensio
perturbations. However, without a proper calculation it is impossible to predict for whi
geometry and in which cross section the patterns are similar.
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The problem discussed above was formulated as a “benchmark problem” for
ERCOFTAC/EUROMECH Colloquium 383. As mentioned, our analysis is a comple
(and somewhat extended) solution of the problem. Apparently other solutions presel
at the Colloquium were less extensive, which precludes a detailed comparison. Hopef
other complete solutions will become available in future. Comparison of results of the ci
sidered benchmark should then be done in the three following stages:

(1) comparison of values of critical Rayleigh numbers and neutral curves;

(2) comparison of values of the aspect ratio where most dangerous perturbations
place each other;

(3) comparison of patterns of the most dangerous perturbations.
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