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The article describes a complete numerical solution of a recently formulated bench-
mark problem devoted to the parametric study of Rayleigh–B´enard instability in rect-
angular two- and three-dimensional boxes. The solution is carried out by the spec-
tral Galerkin method with globally defined, three-dimensional, divergent-free basis
functions, which satisfy all boundary conditions. The general description of these
three-dimensional basis functions, which can be used for a rather wide spectrum
of problems, is presented. The results of the parametric calculations are presented
as neutral curves showing the dependence of the critical Rayleigh number on the
aspect ratio of the cavity. The neutral curves consist of several continuous branches,
which belong to different modes of the most dangerous perturbation. The patterns
of different perturbations are also reported. The results obtained lead to some new
conclusions about the patterns of the most dangerous perturbations and about the
similarities between two- and three-dimensional models. Some extensions of the
considered benchmark problem are discussed.c© 1999 Academic Press

Key Words:global Galerkin method; finite volume method; Rayleigh–B´enard
instability.

1. INTRODUCTION

The study of the stability and multiplicity of numerical solutions leads to an eigenvalue
problem whose order is usually so large that a numerical solution becomes extremely dif-
ficult. Although the corresponding numerical codes and new numerical approaches are
being extensively developed recently, there is a considerable lack of theoretical and nu-
merical results, which can be used for comparison and validation of numerical codes. This
paper is devoted to a relatively simple benchmark problem recently formulated for the
validation of CFD methods containing stability analysis and path-continuation techniques.
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The benchmark problem was proposed at EUROMECH/EUROFTAC Colloquium 383 on
Continuation Methods in Fluid Dynamics [1].

The study of the stability of calculated fluid flows (assuming that the basic state is
unknown and has to be calculated) usually is carried out by time-forward integration of the
corresponding equations. This leads to CPU-time consuming computations and does not
allow one to perform a detailed parametric study. Direct studies of stability and multiplicity,
which involve calculation of the Jacobian matrices, their determinants, and eigenvalues,
became possible only recently. A description of the main approaches, which involve the
calculation of leading eigenvalues of the sparse Jacobian matrix by different versions of
the Arnoldi method, can be found in [2, 3] and references therein. Another approach was
proposed in [4] and was successfully used for parametric stability studies in [5–8]. The
latter approach uses the global spectral method to reduce the number of degrees of freedom
of the numerical model and to calculate the spectrum of Jacobian matrices of much smaller
size.

The best known CFD benchmark problem, which considers the instability of steady
flows, was formulated in [9]. However, most of the calculations reported in [9], as well
as those performed later, were done by a straightforward numerical integration in time.
To the best of our knowledge, the linear stability analysis of this problem was performed
numerically only in [4, 10]. Apparently, this benchmark remains too difficult for numerical
stability calculations, and another simpler benchmark problem can attract a wider attention.
Such a problem was formulated recently in [1]. This benchmark problem is devoted to the
Rayleigh–Bénard instability in confined rectangular two- and three-dimensional containers.
The problem is less difficult than others (e.g., [9]) because (i) the basic state (non-uniformly
heated quiescent fluid) is known and simple and (ii) the spectrum of the linear stability
problem is purely real (i.e., only steady bifurcation is possible). This allows one to validate
parts of numerical codes devoted to stability analysis without preliminary calculation of the
basic state. The existence of two- and three-dimensional subproblems also is an important
advantage.

The present paper describes a complete solution of the benchmark problem by the global
Galerkin method. The two-dimensional version of the approach is described in [4] and was
used for the study of stability of two-dimensional convective flows in [7, 8]. The three-
dimensional version of this numerical approach is described here for the first time.

The physics of the Rayleigh–B´enard instability is well understood [11–13]. A review of
the enormous amount of experimental, theoretical, and numerical studies devoted to this
phenomena can be found in [13]. Most of these studies considered infinite fluid layers.
Consideration of this phenomenon in closed two-dimensional cavities also does not cause
numerical difficulties [14–17]. However, as it is shown here, the detailed parametric study
for three-dimensional rectangular containers leads to several new conclusions. Thus, as it
was shown for the B´enard–Marangoni instability [18], the possible multiplicity of super-
critical states and possible similarities between two- and three-dimensional results become
clearer.

The article is organized as follows. Section 2 contains the formulation of the problem
and description of some known theoretical results. The numerical method is described
in Section 3. Section 4 contains a series of test calculations, which are essential for the
validation of further results. Results for two- and three-dimensional benchmark subproblems
are described in Sections 5 and 6, respectively. The conclusions are drawn in Section 7.
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2. FORMULATION OF THE PROBLEM

2.1. The Full Problem

Convection of a Boussinesq fluid in a rectangular two- or three-dimensional rectangular
cavity is considered. The flow is described by the dimensionless Boussinesq equations

Pr−1

[
∂v
∂t
+ (v · ∇)v

]
= −∇ p+1v+ Raθez (1)

∇ · v = 0 (2)

∂θ

∂t
+ (v · ∇)θ = 1θ, (3)

wherev= (vx, vy, vz) is the fluid velocity,θ = (θ̄ − θ̄A)/(θ̄B− θ̄A) the temperature,p the
pressure,θ̄A and θ̄B are the temperatures of the ambient and the bottom, respectively,
Ra= gα(θ̄B− θ̄A)d̄

3
/νκ the Rayleigh number,Pr= ν̄/χ̄ the Prandtl number,̄g the gravity

acceleration, ¯α the thermal expansion coefficient,(θ̄ B − θ̄ A) the characteristic temperature
difference, ¯ν the kinematic viscosity, ¯κ the thermal diffusivity,d̄ the height of the cavity,
andez is the unit vector in the z-direction (the overbar indicates dimensional variables).

It is assumed that the lower and the lateral boundaries are no-slip, the upper boundary is
stress-free, the lower boundary is isothermal, the lateral boundaries are thermally insulated,
and a convective cooling condition characterized by a Biot numberBi is imposed on the
upper boundary. The dimensionless boundary conditions are

z = 0 θ = 1, v = 0 (4)

z = 1
∂θ

∂z
= −Bi θ, vz = ∂vx

∂z
= ∂vy

∂z
= 0 (5)

x = 0, Ax
∂θ

∂x
= 0, v = 0 (6)

y = 0, Ay
∂θ

∂y
= 0, v = 0. (7)

Here Ax = L̄ x/d̄, Ay= L̄ y/d̄ are the aspect ratios of the cavity in the x- and y-directions,
respectively. The solution of the problem (1)–(7), corresponding to the quiescent state, is

v0 = 0, p0 = Ra

(
z− 1

2

Bi

1+ Bi
z2

)
, θ0 = 1− Bi

1+ Bi
z. (8)

The benchmark problem [1] requires us to calculate the critical valuesRacr of the Rayleigh
number, corresponding to bifurcation from the quiescent state to convective motion, for the
following cases:

r Two-dimensional problems (Ay=∞):
Problem1. ComputeRacr as a function ofAx ∈ [1, 10] for fixedBi= 1;
Problem2. ComputeRacr as a function ofBi∈ [1, 10] for fixed Ax = 10;
Problem3. Compute the pattern of the critical mode for the caseAx = 10,Bi= 1.

r Three-dimensional problems:
Problem4. ComputeRacr as a function ofAx = Ay ∈ [1, 8] for fixedBi= 1;
Problem5. Compute the patterns of the critical modes for the caseAy= 4, Bi= 1

for several values ofAx ∈ [1, 8].
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2.2. Linear Stability Problem and Some Theoretical Considerations

Following the linear stability theory [11,12], we introduce perturbationsv′, p′, andθ ′ of
the initial state(v0, θ0) as

v = v0+ εv′, p = p0+ εp′, θ = θ0+ εθ ′, (9)

whereε is a perturbation amplitude which is assumed to be infinitely small. After substitution
of (9) in Eqs. (1)–(3) and neglecting all terms of order higher thanε, the problem for
perturbations becomes

Pr−1∂v′

∂t
= −∇ p′ +1v′ + Raθ ′ez (10)

∇ · v′ = 0 (11)

∂θ ′

∂t
− Bi

1+ Bi
v′z = 1θ ′. (12)

Following [11, 12] we represent the perturbationsv′, p′, andθ ′ in the form

{v′, p′, θ ′} = {u(x, y, z), P(x, y, z),2(x, y, z)} exp(λt), (13)

where the new unknown functionsu= (ux, uy, uz), P, and2 depend on the spatial coor-
dinates only. Equations (10)–(12) become

λPr−1u = −∇P +1u+ Ra2ez (14)

∇ · u = 0 (15)

λ2− Bi

1+ Bi
uz = 12. (16)

The boundary conditions foru, P, and2 follow from (4)–(8),

z = 0 2 = 0, u = 0 (17)

z = 1
∂2

∂z
= −Bi2, uz = ∂ux

∂z
= ∂uy

∂z
= 0 (18)

x = 0, Ax
∂2

∂x
= 0, u = 0 (19)

y = 0, Ay
∂2

∂y
= 0, u = 0. (20)

Equations (14)–(20) define the eigenproblem for the eigenvaluesλ and the eigenfunctions
u, P, and2. The initial state(v0, θ0) is unstable if there exists at least one eigenvalueλ, such
that Real(λ)>0. Therefore, the solution of the stability problem requires us to determine the
critical value of the Rayleigh numberRacr , for which the largest real part of all the eigenval-
ues is zero. In other words, the marginal stability condition is Real [3(Racr )]= 0, where3 is
the dominant eigenvalue (the eigenvalue with the largest real part). The eigenfunctions cor-
responding to the dominant eigenvalue define the most critical mode of the stability problem.

It is well known that the spectrum of the Rayleigh–B´enard stability problem is real (see
[11, 12], for example). Thus, the considered problem is simplified: it is necessary to look for
Racr > 0, for which the dominant eigenvalue3 is the exact zero. Additionally, as it follows
from (14), the values of the parametersRa, Ax, andAy for whichλ= 0 do not depend on
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the Prandtl number. Therefore in all calculations we considerPr= 1 without any loss of
generality.

3. NUMERICAL METHOD

We use the Galerkin method with globally defined basis functions, which satisfy all the
boundary conditions and the continuity equation. The described numerical approach was
proposed for the solution of hydrodynamic stability problems in [4]. It was successfully
used for the analysis of stability of axisymmetric swirling [5, 6] and two-dimensional
convective [7, 8] flows. Detailed data on several two-dimensional test problems, solved by
this numerical approach, can be found in [4–8]. In the present paper we focus only on the
three-dimensional set of the basis functions in Cartesian coordinates. The set of the basis
functions for the two-dimensional formulation is a particular case of the three-dimensional
case and was described in detail in [4].

The three-dimensional divergence-free velocity vector can be represented as (see also
[18])

v =
 vx

vy

vz

 =
 vx

vy

−∫ ( ∂vx
∂x +

∂vy

∂y

)
dz

 =
 vx

0

−∫ ∂vx
∂x dz

+
 0

vy

−∫ ∂vy

∂y dz

 . (21)

The two terms on the right hand side of (21) can be interpreted as the projections of velocity
on thexy- (y= const) andxz- (x= const) planes, respectively. Therefore, to represent
the three-dimensional velocity vector as a Galerkin series, it is necessary to define two
independent sets of basis functions which will allow us to approximate the projections of
the velocity on these planes. The velocity is approximated as

v ≈
Nx∑

i=0

Ny∑
j=0

Nz∑
k=0

[
c(x)i jk (t)w

(x)
i jk (x, y, z)+ c(y)i jk (t)w

(y)
i jk (x, y, z)

]
, (22)

wherec(x)i jk andc(y)i jk are unknown time-dependent coefficients andw(x)
i jk andw(y)

i jk are the basis
functions in the planesx= const andy= const, respectively. These functions are defined
as

w(x)
i jk (x, y, z) =


0∑4

m=0 f̃ imTi+m
(

x
Ax

)∑4
l=0

g̃jl

2( j+1)Tj+l
( y

Ay

)∑4
n=0 h̃knUk+n−1(z)

−∑4
m=0 f̃ imTi+m

(
x
Ax

)∑4
l=0 g̃jl U j+l−1

( y
Ay

)∑4
n=0

h̃kn
2(k+n)Tk+n(z)

 ,
(23)

w(y)
i jk (x, y, z) =


∑4

m=0
f̂ im

2(i+m)Ti+m
(

x
Ax

)∑4
l=0 ĝjl Tj+l

( y
Ay

)∑4
n=0 ĥknUk+n−1(z)

−∑4
m=0 f̂ imUi+m−1

(
x
Ax

)∑4
l=0 ĝjl Tj+l

( y
Ay

)∑4
n=0

ĥkn
2(k+n)Tk+n(z)

 ,
(24)
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whereTn andUn are the Chebyshev polynomials of the first and the second type, respectively,

Tn(x) = cos[n arc cos(2x − 1)], Un(x) = sin[(n+ 1) arc cos(2x − 1)]

sin[arc cos(2x − 1)]
. (25)

Because of the relation between the Chebyshev polynomials(d/dx)Tn+1(x)==2(n+
1)Un(x) the basis functions (23), (24) are divergence-free and therefore the approximation
of the velocity (22) is analytically divergence-free for any number of Galerkin modes.
Substitution of (23), (24) in the boundary conditions (e.g., (17)–(20)) defines a set of
linear equations for the coefficients̃f im, f̂ im, g̃jl , ĝjl , h̃im, ĥim. After these coefficients are
determined, the Galerkin series (22) satisfy all the linear homogeneous boundary conditions
analytically (for details see [4]). Note also that the projection of the pressure gradient on
the divergent-free basis (23), (24) is analytically zero [4], which means that the Galerkin
procedure eliminates the perturbation of pressure from (14). Therefore, we do not need
an approximation of the pressure. A similar spectral approach was used in [18] for the
study of the Bénard–Marangoni instability in three-dimensional boxes. However, the basis
functions used there were restricted to the certain boundary conditions: most of the boundary
conditions were satisfied analytically while several others (including the boundary condition
with Biot number) were satisfied numerically. The present definition of the basis functions
allows one to satisfy analytically (and without exceptions) an arbitrary set of linear boundary
conditions.

The Galerkin series for the temperature is defined in a similar way,

θ =
(

1− Bi

1+ Bi
z

)
+

Nx∑
i=0

Ny∑
j=0

Nz∑
k=0

di jk (t)qi j (x, y, z), (26)

where

qi j (x, y, z) =
2∑

m=0

pimTi+m

(
x

Ax

) 2∑
l=0

qjl Tj+l

(
y

Ay

) 2∑
n=0

r jnTj+n(z) (27)

and the coefficientspil , qil , and ril are defined to satisfy all the temperature boundary
conditions (17)–(20). Linear combinations of the Chebyshev polynomials, similar to (27),
were used in [19] for solution of the one-dimensional Orr–Sommerfeld equation.

Application of the Galerkin method to the linear stability problem (14)–(20) leads to the
algebraic eigenvalue problem (we considerPr= 1, as it was mentioned above)

N∑
J=1

L I J X J = λX I , (28)

where theN-dimensional vectorX consists of all the coefficientsdi jk , c(x)i jk , and c(y)i jk ,
N= 3× Nx × Ny× Nz is the total number of the Galerkin modes (degrees of freedom),
and the matrixL is composed from 9 matricesDxx, Dxy, Dyx, Dyy, Bx, By, Cx, Cy, andE as

L =


Dxx Dyx RaBx

Dxy Dyy RaBy

Bi
1+Bi Cx

Bi
1+Bi Cy E

 . (29)
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The matricesD contain the Galerkin projections of the viscous dissipation terms, the ma-
trices B represent the projections of the buoyancy force, the matricesC represent the
projections of the convective term of Eq. (16), and the matrixE represents the dissipation
term of the energy equation:

Dηξ =
[〈
1w(η)

i jk ,w
(ξ)
pqr

〉]
, (30)

Bη =
[〈

qi jk ,w(η)
pqr · ez

〉]
, (31)

Cη =
[〈

w(η)
i jk · ez,qpqr

〉]
, (32)

E = [〈1qi jk ,qpqr〉], (33)

Hereη and ζ are x or y, and the pairs of indices(i, p), ( j,q), and (k, r ) vary from 0
to Nx, Ny, andNz, respectively, the angular brackets represent the inner product and the
square brackets represent assembling all the terms in one matrix. Note that the matrixL
can be symmetrized if one multiplies Eq. (14) byBi/(1+Bi) and Eq. (16) byRa before
the Galerkin process starts. This will lead to the multiplication of the first two rows of
(29) by Bi/(1+Bi), and the third row byRa. It is easy to see that such a transforma-
tion will not alter the eigenvalues. The eigenvector will change so that components of
X corresponding toc(x)i jk andc(y)i jk will be multiplied by Bi/(1+Bi), and the components
corresponding todi jk will be multiplied by Ra. Therefore, the patterns of the dominant
perturbation modes (which are defined within multiplication by a constant) will not be
altered.

The symmetric form of the matrixL emphasizes the fact that all the eigenvalues are
real numbers and permits us to use effective eigenvalue solvers for symmetric matrices.
However, such solvers will be hardly useful for the general case, when the stability of
a basic state with non-zero velocity is considered. The code used in the present study is
based mainly on the QR decomposition algorithm for the general eigenproblem, which is
used in cases when the stability of steady flows with non-zero initial velocity is considered
[4–8].

An approximation of the velocity field (22) may be represented also by the vector potential
Ψ= (9x, 9y, 9z), v= rotΨ. Using Eqs. (21)–(24) it can be easily found that9z= 0, and
the two other components can be represented as

9x =
Nx∑

i=0

Ny∑
j=0

Nz∑
k=0

c(x)i jk (t)ψ
(x)
i jk (x, y, z), 9y =

Nx∑
i=0

Ny∑
j=0

Nz∑
k=0

c(y)i jk (t)ψ
(y)
i jk (x, y, z) (34)

ψ
(x)
i jk =

4∑
m=0

f̃ imTi+m

(
x

Ax

) 4∑
l=0

g̃ jl

2( j + l )
Tj+l

(
y

Ay

) 4∑
n=0

h̃kn

2(k+ n)
Tk+n(z) (35)

ψ
(y)
i jk = −

4∑
m=0

f̂ im

2(i +m)
Ti+m

(
x

Ax

) 4∑
l=0

ĝjl Tj+l

(
y

Ay

) 4∑
n=0

ĥkn

2(k+ n)
Tk+n(z). (36)

The two scalar functions9x and9y can be used to represent the three-dimensional velocity
field instead of three components of velocity (see Section 6). In the case of two-dimensional
flow in the xz-plane the two-dimensional stream function is represented by9y, with the
dependence ony omitted.
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4. VALIDATION OF THE CODE

4.1. An Infinite Fluid Layer

The first test case used for the validation of the code was the classical Rayleigh–B´enard
problem for stability of the quiescent state of an infinite fluid layer heated from below. Three
cases of the boundary conditions were considered: (1) stress-free isothermal horizontal
boundaries, (2) no-slip isothermal horizontal boundaries, and (3) stress-free thermally insu-
lated upper and no-slip isothermal lower boundary. Cases (1) and (2) are classical [11, 12]
and the critical Rayleigh numbers areRa(1)cr = 27π4/4≈ 657.511 andRa(1)cr ≈ 1707.762, re-
spectively. In the third case, considered in [20], it is assumed that the initial distribution
of the temperature isθ = 1− z (isothermal boundaries), but the boundary conditions for
the perturbation of the temperature are described by (17), (18) withBi= 0. This yields
Ra(3)cr ≈ 669. The last case was used to validate the code for different boundary conditions
at the horizontal boundaries.

It is known that the onset of convection in all three problems is caused by two-dimensional
perturbations [11, 12]. This allows us to consider rectangular cavities with periodic boundary
conditions on the vertical boundaries. The aspect ratio of the cavities was taken equal to
half of the critical wavelength. The results for different numbers of the basis functions are
summarized in Table I. It is seen that for all three cases the use of 6× 6 basis functions
provides 3–4 correct digits ofRacr , and that convergence up to 9–10 digits is reached with
the use of 10× 10 basis functions. Such a rapid convergence can be explained by the form
of the most critical modes, which are sine and cosine in both directions. The Chebyshev
polynomials (25) used in the definitions of the basis functions also are forms of sine and
cosine and hence provide a very rapid approximation of the latter.

4.2. Two-Dimensional Cavities

Convergence of the critical Rayleigh number for two-dimensional cavities is shown in
Table II. ForBi= 1 (Problem 1) cavities withA= 1, 5, and 10 were considered. To ensure
convergence for otherBi (Problem 2) the most difficult case withA= 10 andBi= 10 was
also taken into consideration. The number of basis functionsNx × Nz was always chosen
such thatNx = (number of rolls)× Nz . The number of convective rolls in the most critical
perturbation mode increases with the growth of the aspect ratio (see Section 5). Therefore
better resolution in the horizontal direction is needed to resolve the perturbation mode
correctly. The results show (see Table II) that four correct digits ofRacr can be obtained

TABLE I

Critical Rayleigh Number for Onset of Convection in an Infinite Horizontal Fluid Layer

Infinite layer with Infinite layer with Infinite layer with
sress-free isothermal no-slip isothermal boundary conditions (17),

Nx × Nz boundaries,Ra(1)cr boundaries,Ra(2)cr (18) forBi= 0, Ra(3)cr

2× 2 664.86942 1751.19773 683.75248
4× 4 657.51854 1708.55024 669.06955
6× 6 657.51139 1707.76205 669.03345
8× 8 657.51140 1707.76181 669.03345

10× 10 657.51140 1707.76181 669.03345
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TABLE II

Convergence Study for Finite 2D Cavities with Boundary Conditions (17)–(19)

A= 1, Bi= 1 (1 roll) A= 5, Bi= 1 (4 rolls) A= 10,Bi= 1 (7 rolls) A= 10,Bi= 10 (8 rolls)

Nx × Nz Racr Nx × Nz Racr Nx × Nz Racr Nx × Nz Racr

4× 4 3147.8841 8× 2 1699.4276 14× 2 1602.4762 16× 2 1128.7519
6× 6 3147.2828 16× 4 1648.9375 28× 4 1566.0572 32× 4 1105.5130
8× 8 3147.2654 24× 6 1648.8235 42× 6 1565.9507 48× 6 1105.3999

10× 10 3147.2641 32× 8 1648.8233 56× 8 1565.9506 64× 8 1105.3999
12× 12 3147.2640 40× 10 1648.8233 70× 10 1565.9506 80× 10 1105.3999
14× 14 3147.2640 48× 12 1648.8233 84× 12 1565.9506 96× 12 1105.3999

with Nx = 6. Eight digits ofRacr remain unchanged with the use ofNx ≥ 12. This ensures
the convergence of the numerical method.

Further validation of the numerical method requires comparison with independent nu-
merical data. To validate the coefficients in (23), (24), and (27), defining the boundary
conditions, it is necessary to compare with independent results obtained for the considered
boundary conditions (17)–(20). To the best of our knowledge, such data was not published
yet. Therefore, the necessary comparison is carried out in two separate ways, as follows.
First, we compare with the results of [14], obtained for cavities with four no-slip walls.
Second, using the unsteady finite volume solver, we produce some independent data for the
considered boundary conditions and use it for comparison. The comparison with results of
[14] is shown in Table III. The results coincide up to the fourth digit, which provide an addi-
tional justification of the described spectral approach. According to our convergence studies
(Table II), we can expect more than 4 correct digits in our results reported in Table III.

To validate the converged values ofRacr , obtained for the considered boundary conditions
(17)–(20), a direct straightforward solution of the problem (1)–(7) was carried out using the
finite volume method. The method is second order in space and time and was already used
for similar purposes in [5–8]. To define the departure from the pure conduction regime (8)
we define the Nusselt number as

Nu= −1+ Bi

BiA

A∫
0

∂θ

∂z
dx. (37)

Obviously,Nu= 1 corresponds to pure conduction andNu> 1 indicates the presence of
convective motion. The relationsNu(Ra) were calculated for the casesA= 1, Bi= 1 and

TABLE III

Comparison with Results of [14]: Finite 2D Cavities

with 4 No-Slip Walls

A Nx × Nz Present results Results of [4]

1 10× 10 2585.02 2585.03
2 20× 10 2013.21 2013.24
3 30× 10 1870.58 1870.72
4 40× 10 1810.27 1810.48
5 50× 10 1778.56 1779.00
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TABLE IV

Elapsed CPU Time (s) for Different Eigensolvers

Parameters Nx × Nz 1 2 3 4

A= 1, Bi= 1 10× 10 3.2 2.0 1.6 0.64
A= 5, Bi= 1 40× 10 330 230 205 35
A= 10,Bi= 10 80× 10 3320 2020 1890 210

Note.Calculations on workstation DEC 3000. 1, QR eigensolver with non-symmetric matrix; 2,
QR eigensolver with symmetrized matrix; 3, QL/QR eigensolver for symmetric matrices; 4, inverse
iteration algorithm.

A= 10, Bi= 10, using 50× 50 and 100× 30 uniform grids, respectively. In the first case
the onset of convection was found to take place in the interval 3140<Ra< 3150, and in
the second case 1100<Ra< 1107. Both results are in complete agreement with the results
of linear stability analysis (Table II).

It should be noticed that the straightforward time-dependent calculations near the critical
points are more difficult than far from them. Consider, for example, the caseA= 10,Bi= 10.
The calculations were done using a 100× 30 uniform grid and a time step1t = 0.01. Steady
state was assumed to be reached when the relative difference between two successive
states in each node of the grid was less thanε= 10−5. Calculation forRa= 1400, using
steady state atRa= 1500 as initial guess(1Ra= 100), required 920 time steps. A similar
calculation forRa= 1120, using steady state atRa= 1130 as initial guess(1Ra= 10),
required 1300 time steps. The necessary integration time increases when the Rayleigh
number approaches its critical value. This simple example emphasizes the superiority of
a direct stability analysis as compared with a straightforward unsteady simulation when
hydrodynamic stability problems are considered.

Some characteristic elapsed CPU times needed for the solution of the eigenvalue problem
(28) are shown in Table IV. The first case (QR algorithm for the non-symmetric matrixL )
is characteristic of the general case with non-zero initial velocity field. The DGEEV driver
routine of the LAPACK library was used for this purpose. The necessary CPU time grows
approximately asN3, whereN is the total number of degrees of freedom(N= 2× Nx × Ny

for 2D convective flows andN= 3× Nx × Ny× Nz for 3D convective flows). Use of
the QR algorithm with the symmetrized matrix (case 2 in Table IV) allows one to reduce
the necessary CPU by approximately 30%. The reason for this is the triangular form of the
resulting Hessenberg matrix, such that no additional computations are needed to obtain the
eigenvalues. A switch from general to symmetric QL/QR eigensolver (DSYEV driver rou-
tine of the LAPACK library, case 3 in Table IV) provides an additional speedup of 5–10%.
Finally, we tried to use the inverse iteration algorithm to calculate the dominant eigenvalue
only. For the first initial guess it was assumed that the dominant eigenvalue is a small positive
number, say3= 0.1. In the case when the computation converges to a correct eigenvalue
the inverse iteration algorithm (case 4) is faster than previous algorithms (see Table IV).
However, it converges only when the dominant eigenvalue is far enough from the rest of the
spectrum. Unfortunately this is not the case for the considered problem (see below), as well
as for other hydrodynamic stability problems. In cases when several eigenvalues are close
(in the considered case—close to zero), the inverse iteration algorithm does not converge,
or converges to a wrong result (non-dominant eigenvalue). The reported stability diagrams
were obtained with the use of the QR algorithm with the symmetrized matrixL .
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TABLE V

Test Calculations for Finite 3D Cavities,Bi = 1

Ax = Ay= 1 Ax = Ay= 4 Ax = Ay= 8

Nx × Ny× Nz Racr Nx × Ny× Nz Racr Nx × Ny× Nz Racr

4× 4× 4 4350.3 6× 6× 4 1687.1 8× 8× 4 1590.8
6× 6× 6 4347.2 8× 8× 6 1683.9 10× 10× 6 1579.0
8× 8× 8 4347.1 10× 10× 8 1683.8 12× 12× 8 1577.2

10× 10× 10 4347.1 12× 12× 10 1683.8 14× 14× 10 1577.2

4.3. Three-Dimensional Cavities

The three-dimensional part of the code was validated using the results of [21] obtained
for a rectangular cavity with no-slip boundaries. Our results forA= Ax = Ay= 2 and 6 are
Racr = 2085 and 1755, respectively. The corresponding results of [21] areRacr = 2107 and
1765. Several examples of convergence study for cavities withAx = Ay= A (Problem 4)
are shown in Table V. Compared to the two-dimensional case the total number of degrees
of freedom increases by a factor of 1.5× Ny. Therefore it was not possible to perform the
convergence study with as much detail as it was done for 2D cavities. However, the results
reported in Table V together with the conclusions made in the preceding subsection allow us
to be quite confident in 4–5 correct digits ofRacr when using 10× 10× 8 basic functions for
A≤ 4, and 12× 12× 8 basic functions forA≤ 8. It is seen (Table V) that results obtained
for small number of the basis functions (with poor spatial resolution) overestimate values of
Racr . The above small discrepancy between our results and results of [21] can be explained
by fewer number of Galerkin modes used for the calculations [21]. Besides this, during
the EUROMECH Colloquium 383, we compared our critical values with results of other
authors (not published yet). Comparisons made mainly forA= Ax = Ay= 1 and 3 showed
good agreement between different numerical approaches used.

The characteristic CPU times for the corresponding eigenproblems are (QR decomposi-
tion algorithm for symmetrized matrixL ) 2600 s for 8× 8× 8 basis functions (1536 degrees
of freedom) on DEC 3000 workstation; 3500 s for 12× 12× 8 functions (3456 degrees of
freedom) on CRAY J90 with 8 processors.

5. RESULTS FOR THE TWO-DIMENSIONAL CASE

The marginal stability curveRacr (A) for Bi= 1 is plotted in Fig. 1. It consists of several
continuous parts, which correspond to the different most critical modes. In cases of instabili-
ties due to Hopf bifurcation, different most critical perturbation modes can be distinguished
by abrupt changes of the critical frequencies of oscillations [5–8]. In the present case,
however, the only way to distinguish between the different perturbation modes is to plot
the corresponding patterns of the most critical perturbations. Clearly, at the points where
one critical mode is replaced by another one the critical Rayleigh numbers of both modes
are close. Therefore, it is not enough to compare only the calculated values ofRacr , because
close values can belong to different perturbation modes. Patterns of the dominant perturba-
tions also must be compared. For that reason we have to extend the Problem 3 and to plotthe
different patternsof the most critical modes. These different modes differ by the number of
convective rolls and are included in Fig. 1 as insets. Furthermore, to make a complete com-
parison between different numerical approaches it is necessary to compare the values of the
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FIG. 1. Dependence of the critical Rayleigh number on the aspect ratio. Two-dimensional case.Bi= 1.
(a) 1≤ A≤ 5, (b) 5≤ A≤ 10.

aspect ratio where one dominant mode is replaced by another one. These values are shown
in Fig. 1, as well as in all stability diagrams corresponding to other 2D and 3D cases. It
should be mentioned that the increase of the number of two-dimensional Rayleigh–B´enard
convective rolls with the increase of the aspect ratio is well known [13–15].

The dependenceRacr (Bi) for A= 10 is shown in Fig. 2. In this case only one change
of the most critical perturbation mode (from seven to eight convective rolls) was found at
Bi= 2.34. Patterns of the corresponding most critical modes are shown as insets in Fig. 2.

It should be noted also that at large supercriticalities, where several perturbation modes
are unstable, one can expect the existence of multiple steady (and probably also oscillatory)
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FIG. 2. Dependence of the critical Rayleigh number on the Biot number. Two-dimensional case.A= 10.

states of the convective flow. The resulting asymptotic state will depend not only on the
governing parameters but also on the initial state of the flow.

6. RESULTS FOR THE THREE-DIMENSIONAL CASE

6.1. Problem 4: Square Horizontal Cross Section,1≤ A= Ax = Ay≤ 8

The neutral curve for Problem 4(1≤ A= Ax = Ay≤ 8) is shown in Fig. 3. Similarly
to the two-dimensional case, there are several modes of the most dangerous perturbation
which replace each other whenA is varied. However, the spectrum of possible perturbations
is more complicated in the three-dimensional case. The larger variety of perturbations is
obviously caused by the three-dimensional geometry. An additional complexity is caused
by the variety of the symmetries of the problem (see below). Values of critical Rayleigh
numbers corresponding to different perturbation modes are close which makes it difficult
to indicate the most dangerous one. The last statement is illustrated in Table VI which
lists the largest eigenvalues in the interval [−1, 0], calculated for the caseA= 1.7, at the
critical Rayleigh numberRacr = 2355.2. Note that atRa= 2400 the dominant eigenvalue is
already larger than 20,λmax= 29.91. In the considered case (Table VI) there are 4 multiple
and 7 simple eigenvalues which are relatively close to zero. It is obvious that at largerRa
more modes become unstable which can lead to an appearance of multiple steady states.
Recently, seven different supercritical steady states in a cubic cavity heated from below
were calculated in [22].

Following [18] we denote symmetry classesEE, EO, OE, andOO for functions which
areeven orodd with respect to the midplanesx= Ax/2 andy= Ay/2, respectively. Fur-
thermore, we denote symmetry classesRSandRA for functions which aresymmetric and
antisymmetric, respectively, with respect to 180◦ rotation around the vertical axis that passes
through the center of the horizontal cross section (linex= Ax/2, y= Ay/2). Note that the
EE class is a subset of theRSclass (theOO class is a subset of theRA class); however,



FIG. 3. Dependence of the critical Rayleigh number on the aspect ratioA= Ax = Ay. Three-dimensional
case.Bi= 1. (a) 1≤ A≤ 2, (b) 2≤ A≤ 5, (c) 5≤ A≤ 8.
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TABLE VI

Larget Eigenvalues 0≤λ≤ 1 Found

for Ra= 2355.2 andA = 1.7

No. λ Multiplicity

1 0 2
2 −0.3276 1
3 −0.3402 2
4 −0.3717 1
5 −0.5585 1
6 −0.5681 2
7 −0.5694 1
8 −0.6196 1
9 −0.6536 2

10 −0.7230 1
11 −0.9608 1
12 −0.9991 1

these classes do not coincide (see Figs. 4 and 5, for example). Note also that in cavities with
square horizontal cross section the classesEOandOEare identical, and the classesRSand
RAare defined to within a 90◦ rotation around the same axis. This leads to a multiplicity
of the corresponding eigenvalues. For example, the leading eigenvalue in Table VI corre-
sponds to the perturbation withRAsymmetry and has a multiplicity of 2. It should be noted
also that symmetries of all scalar functions considered (three components of velocity and

FIG. 4. Perturbation atAx = Ay= 1,Bi= 1, Racr = 4347. (a) Perturbation of temperature, (b) streaklines of
perturbation of velocity, (c) isotherms, and (d) vertical velocity contours in the mid-height cross section.
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FIG. 5. Perturbation atAx = Ay= 1.5, Bi= 1, Racr = 2506. Same as Fig. 4.

temperature) do not necessarily coincide. Therefore we use only the temperature and the
vertical velocity, whose symmetries necessarily coincide (larger temperature causes rising
of the fluid), to characterize the symmetry properties of the perturbation patterns.

It follows from the multiplicity of the perturbation modes that comparison of values of
the critical Rayleigh number only is not sufficient to ensure that different codes yield similar
results. It is necessary also to compare the patterns of the most dangerous perturbation at
several characteristic points and to compare the values ofA where different perturbation
modes replace each other (as we suggested for the two-dimensional case). These values
of the aspect ratio are shown in Fig. 3. The characteristic patterns of the most dangerous
perturbations of the temperature and velocity are illustrated in Figs. 4–11. To visualize
velocity we use streaklines calculated using the calculated perturbation of velocity. Note
that in the three-dimensional case the streaklines are not necessarily closed curves. As it
follows from the following figures, a liquid particle can travel from one convective roll to
another (see also [22]). In the following text the word “perturbation” will be used instead
of the term “the most dangerous perturbation.”

At A= Ax = Ay= 1 (Fig. 4) the perturbation is similar to the one obtained for the two-
dimensional case (Fig. 1a) and appears as a roll where hot liquid rises along one vertical
wall and cold liquid descends along the opposite wall. The perturbations of temperature and
vertical velocity belong to theRAsymmetry class (Figs. 4c and 4d). At larger values ofA
this perturbation pattern deforms such that the flow trajectories and temperature isosurfaces
tend to turn away from the walls towards the diagonal planes (Fig. 5) and therefore become
different from their two-dimensional analogues. However, theRAsymmetry is preserved
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FIG. 6. Perturbation atAx = Ay= 3, Bi= 1, Racr = 1728. Same as Fig. 4.

FIG. 7. Perturbation atAx = Ay= 4, Bi= 1, Racr = 1684. Same as Fig. 4.
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FIG. 8. Perturbation atAx = Ay= 5, Bi= 1, Racr = 1633. Same as Fig. 4.

(Figs. 5c and 5d). AtA= 2.09 (Fig. 3a) this perturbation is replaced by another one (Fig. 6),
where the hot liquid rises at the center of the cavity and the cold liquid descends along the
vertical walls. A cross section by a vertical midplane yields the pattern which is similar
to a two-dimensional one shown in Fig.1a for the interval includingA= 3. However, the
toroidal shape of the convective roll cannot be predicted on the basis of a two-dimensional
calculation. The perturbations of temperature and vertical velocity in this case belong to
theEEsymmetry class (Figs. 6c and 6d).

The next change of perturbation takes place atA= 3.90 (Fig. 3b). The corresponding
perturbation belongs to theRAsymmetry class and consists of three convective rolls (Fig. 7).

FIG. 9. Perturbation atAx = Ay= 6, Bi= 1, Racr = 1598. Same as Fig. 4.
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FIG. 10. Perturbation atAx = Ay= 6.5, Bi= 1, Racr = 1597. Same as Fig. 4.

This perturbation pattern in a vertical midplane cross section looks similar to the correspond-
ing two-dimensional result (Fig. 1a). Another perturbation, belonging to theOOsymmetry
class (Fig. 8), appears to be the most dangerous atA= 4.98 (Fig. 3b). It consists of four rolls,
located in the corners, with the hot fluid rising near two opposite corners and descending
near two other corners (Fig. 8b). This perturbation is replaced atA= 5.38 by another one
which belongs to theEEsymmetry class (Fig. 9). It consists of two toroidal rolls, one inside
another, with the hot fluid descending near the walls and the center (Fig. 9b).

It is more difficult to describe the flow arising as a result of bifurcations corresponding
to the two last branches of the neutral curve (Fig. 3c). The perturbation which is the most
dangerous in the interval 6.41< A< 7.37 is illustrated in Fig. 10. Here one can see strong

FIG. 11. Perturbation atAx = Ay= 7, Bi= 1, Racr = 1588. Same as Fig. 4.



MODES OF RAYLEIGH–B́ENARD INSTABILITY 319

upflow and downflow in two opposite corners, while in two other corners the convective
motion is weaker. The symmetry of the perturbation clearly belongs to the classRA.

The last perturbation corresponding to the neutral curve shown in Fig. 3 is illustrated in
Fig. 11. This perturbation also belongs to theRAclass, but now the upflow and the downflow
occur near the opposite walls.

6.2. Problem 5: Ax = 4, 1≤ Ay≤ 8

The neutral curve for this case is shown in Fig. 12. Similarly to the previous case the
points where one perturbation is replaced by another one are shown on the graph. Patterns
of the most dangerous perturbations are shown in the following figures.

FIG. 12. Dependence of the critical Rayleigh number on the aspect ratioAx = 4, 1≤ Ay ≤ 8. Three-
dimensional case.Bi= 1. (a) 1≤ Ay ≤ 4, (b) 4≤ Ay ≤ 8.



320 ALEXANDER YU. GELFGAT

FIG. 13. Perturbation atAx = 4, Ay= 1, Bi= 1, Racr = 2645. Same as Fig. 4.

At Ay= 1 (Fig. 13) the perturbation belongs to theOE symmetry class and consists of
three convective rolls parallel to the shorter lateral boundary. In the cross sectiony= 0.5 it
looks similar to the two-dimensional perturbation atA2D = 4 (Fig. 5a,A2D denotes the two-
dimensional aspect ratio). AtAy= 1.28 (Fig. 12a) it is replaced by theEO-symmetric per-
turbation which consists of a single roll situated along the longer lateral boundary (Fig. 14).
A similarity with the two-dimensional case also can be found, but in this case one has to
compare the cross sectionx= 2 with the 2D perturbation atA2D = 1. The next change of the
perturbation takes place atAy= 1.84. The next perturbation isOE-symmetric and consists
of three rolls situated along the longer lateral boundary (Fig. 15). Again, the cross section
x= 2 shows similarity with the two-roll 2D perturbation characteristic forA2D > 3.59 (not
A2D = 2, see Fig. 1a). Note that in spite of the clear similarity between the 3D and 2D
perturbations it is impossible to foresee in which cross section of the three-dimensional
container the similarity will exist.

The perturbations which become the most dangerous atAy= 2.59 and Ay= 3.54
(Fig. 12a) have patterns similar to those reported in Figs. 6 and 7 forA= Ax = Ay= 3

FIG. 14. Perturbation atAx = 4, Ay= 1.5, Bi= 1, Racr = 2043. Same as Fig. 4.



MODES OF RAYLEIGH–B́ENARD INSTABILITY 321

FIG. 15. Perturbation atAx = 4, Ay= 2, Bi= 1, Racr = 1918. Same as Fig. 4.

and A= Ax = Ay= 4, respectively. The two perturbations characteristic for the two last
branches of the neutral curve are illustrated in Figs. 16 and 17. The perturbation which is
most dangerous for 5.31≤ Ay≤ 6.75 (Fig. 16) isEE-symmetric and has two main convec-
tive rolls located near the shorter lateral boundaries. Convective motion outside the main
rolls is weak and has no definite roll structure. This perturbation has no two-dimensional
analog. The next perturbation, most dangerous forAy≥ 6.75 (Fig. 17), isOE-symmetric
and consists of 5 transverse rolls directed along the shorter lateral boundaries. This per-
turbation is similar to the two-dimensional one (see the perturbation shown in Fig. 1b for
A2D = 7).

FIG. 16. Perturbation atAx = 4, Ay= 6.5, Bi= 1, Racr = 1617. Same as Fig. 4.
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FIG. 17. Perturbation atAx = 4, Ay= 7.5, Bi= 1, Racr = 1603. Same as Fig. 4.

CONCLUSIONS

The problem considered here deals with the spectrum of linear terms of the Navier–Stokes
and energy equations in the Boussinesq approximation. This problem does not require very
good spatial resolution and therefore can be treated with relative ease numerically. Obvi-
ously, more realistic problems devoted to thenumerical study of the stability of numerically
calculated flowswill involve also the calculation of the basic flow. Then it will be necessary
to reach a sufficient accuracy for both basic state and the most dangerous perturbation. In
the case of boundary layers [5, 6] or multiplicity of the basic states [8] the problem can
become extremely difficult. In view of this the considered benchmark can be attractive
for those who start the numerical stability analysis and need validation of their numerical
schemes and eigensolvers. On the other hand it can be used only as as a preliminary vali-
dation and should be completed by solution of a problem with ana priori unknown basic
state.

The physics of the Rayleigh–B´enard instability is very well understood [11–13]. How-
ever, the results obtained here for a particular rectangular geometry lead to an additional
conclusion. It was shown that several different perturbations of the basic quiescent state
become critical at close values of the Rayleigh number. This means that in a supercritical
state any of these perturbations can grow and the final asymptotic state will depend on the
initial conditions. Therefore multiple supercritical steady states can be expected here. This
fact should be taken into account when experimentally observed or numerically obtained
supercritical flows are compared. It was mentioned already that seven distinct branches of
supercritical states for the Rayleigh–B´enard convection in a cube were calculated recently
in [22]. Multiple patterns of B´enard–Marangoni instability in three-dimensional boxes were
also obtained in [18] using a spectral approach similar to one described here.

There exists a certain similarity between the patterns of two- and three-dimensional
perturbations. However, without a proper calculation it is impossible to predict for which
geometry and in which cross section the patterns are similar.
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The problem discussed above was formulated as a “benchmark problem” for the
ERCOFTAC/EUROMECH Colloquium 383. As mentioned, our analysis is a complete
(and somewhat extended) solution of the problem. Apparently other solutions presented
at the Colloquium were less extensive, which precludes a detailed comparison. Hopefully,
other complete solutions will become available in future. Comparison of results of the con-
sidered benchmark should then be done in the three following stages:

(1) comparison of values of critical Rayleigh numbers and neutral curves;
(2) comparison of values of the aspect ratio where most dangerous perturbations re-

place each other;
(3) comparison of patterns of the most dangerous perturbations.
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